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Abstract

Novel algorithms for object recognition are described that directly recover the transformations relating
the image to its model. Unlike methods �tting the conventional framework, these new methods do not
require exhaustive search for each feature correspondence in order to solve for the transformation. Yet
they allow simultaneous object identi�cation and recovery of the transformation. Given hypothesized
corresponding regions in the model and data (2D views) | which are from planar surfaces of the 3D
objects | these methods allow direct compututation of the parameters of the transformation by which
the data may be generated from the model. We propose two algorithms: one based on invariants derived
from no higher than second and third order moments of the image, the other via a combination of the
a�ne properties of geometrical and di�erential attributes of the image. Empirical results on natural
images demonstrate the e�ectiveness of the proposed algorithms. A sensitivity analysis of the algorithm is
presented. We demonstrate in particular that the di�erential method is quite stable against perturbations
| although not without some error | when compared with conventional methods. We also demonstrate
mathematically that even a single point correspondence su�ces, theoretically at least, to recover a�ne
parameters via the di�erential method.
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1 Introduction

Object recognition is one of the central problems in com-
puter vision. The task of model-based object recognition
(e.g., [4]) is to �nd the object model in the stored library
that best �ts the information from the given image. The
most common methods of model based object recogni-
tion fall into two categories from the point of view of how
the objects are represented and how they are matched:

The �rst represents objects by a set of local geometri-
cal features | such as vertices that can be fairly stably
obtained over di�erent views | and matches the model
features against the image features, typically in a exhaus-
tive manner. In general, this type of method simultane-

ously identi�es the object and recovers the transforma-
tion. Equivalently, it recovers the pose of the object that
would yield an image from the object model in which the
projected features best matches those found in the given
image (e.g., [4, 7, 24, 11]). One such method is based on
the `hypothesize and test' framework. It �rst hypothe-
sizes the minimum number of correspondences between
model and image features that are necessary to compute
the transformation e.g.,[7, 24]. Then, for each hypothe-
sized set of corresponding features, the transformation is
computed and then used to reproject the model features
onto the image features. The hypothesized match is then
evaluated based on the number of projected features that
are brought into close proximity to corresponding image
features, and the pair of the transformation and model
with the best match is selected.

While this approach has achieved remarkable suc-
cess in recognizing objects, particularly in dealing with
the problem of occlusions of object surfaces, it still has
practical computational problems, due to its exhaustive
search framework. For example, even with a popular al-
gorithm [7] for matching model objects with m features
with image data with n features, we have to test on the
order of m3n3 combinations, where m and n are easily
on the order of several hundreds in natural pictures.

On the other hand, approaches in the second category
represent objects by more global features. One method
of this type is the moment invariantmethod. It combines
di�erent moments to represent the object, and matches
the object model and image data in moment space[6, 19,
1]. The chosen combinations of moments are designed
so that they are invariant to the image transformations
of concern, such as translations, dilation, and rotations.
Thus, emphasis is mainly placed on the identi�cation of
the object in terms of the object model represented by
the combinations of the moments, rather than on the
recovery of the transformation between the model and
the image data.

In addition, most authors have not addressed the
problem of general a�ne transformation case (instead
only treating translation, dilation and scaling). An ex-
ception is the method by Cyganski et. al.[2] based on
tensor analysis. They developed a closed form method
to identify a planar object in 3D space and to recover
the a�ne transformation which yields the best match be-
tween the image data and the transformed model. The
basis of their method is the contraction operation of the
tensors[12, 9] formed by the products of the contravari-

ant moment tensors of the image with a covariant per-
mutation tensor that produces unit rank tensors. Then,
further combining those with zero-order tensors to re-
move the weight, they derived linear equations for the
a�ne parameters sought after. This method is quite ele-
gant, but, it turns out that it needs at least moments up
to fourth order. In general, the second type of method
is very e�cient when compared with the �rst type of
method, that is, methods based on local features plus
exhaustive search. At the same time, methods based
on invariants tend to be very sensitive to perturbations
in the given image data. For example, Cyganski's al-
gorithm is known to be very e�cient computationally,
however, since higher order moments are notorious for
their sensitivity to noise[18], it is very fragile when it
comes to perturbations in the image data, being partic-
ularly sensitive to local occlusions of object surfaces.

The algorithm that we propose in this paper can be
classi�ed in the second category for the reason given be-
low. It is more e�cient than conventional approaches
in the �rst category, yet more stable than conventional
methods of the second category: (1) it relies on the pres-
ence of potentially corresponding image fragments over
di�erent views, that are from planar patches on the sur-
face of the 3D objects, (2) it provides a non-recursive,
that is, closed-form, method for object recognition. The
method does not require complete image regions to be
visible and does not depend on the use of local features
such as edges or `corners.' Our method also recovers the
transformation from the object model to the image data,
but, unlike Cyganski's method, it does not use moments
of order higher than second or third order. Therefore,
compared with Cyganski's method, it should be less sen-
sitive to perturbations. In addition, we also present an-
other new approach to robust object recognition using
di�erential properties of the image.

Thus, we propose two di�erent algorithms: one based
on an a�ne invariant unique to the given image, which
uses up to second or third order moments of the image,
and the other via a combination of second order statistics
of geometrical and di�erential properties of the image.
Both algorithms recover the a�ne parameters relating a
given 2D view of the object to a model composed of pla-
nar surfaces of a 3D object under the assumption of or-
thographic projection[20, 10]. We also demonstrate that
such methods based on the di�erential properties of the
image are fairly stable against perturbations. Of course,
the results are not perfect in the presence of perturba-
tions, but the new method does provide much better
results than conventional methods using global features.
Although we do not explicitly address the problem of
how to extract corresponding regions for planar patches
in di�erent views, it is known to be fairly feasible using
one of several existing techniques (e.g.,[22, 21, 23, 13]).
Once we have recovered the a�ne transformation for the
planar patches, we know that by using the 3D object
model we can immediately recover the full 3D informa-
tion of the object [7]. Therefore, our algorithm is aimed
at direct 3D object recognition, by �rst recognizing pla-
nar surfaces on the object, and then recovering full 3D
information, although the recovery of 3D information is
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Figure 1: Commutative Diagram of Transformations
Given model feature X and corresponding data feature X 0

,

we seek conditions on the transformations A;A0
such that

this diagram commutes.

not explicitly addressed in this paper. Some experimen-
tal results on natural pictures demonstrate the e�ective-
ness of our algorithm. We also give here an analysis of
the sensitivity of the algorithm to perturbations in the
given image data.

2 Recovering a�ne parameters via an

a�ne invariant plus rotation

invariant using no higher than

second/third order moments

In this section, we present a closed form solution for re-
covering the a�ne parameters with which a given image
can be generated from the model, using an a�ne invari-
ant theory that we have recently proposed. We �rst sum-
marize the a�ne invariant description (up to rotations)
of the image of planar surfaces. Then, using this prop-
erty, we show how the a�ne parameters are recovered
via direct computation in conjunction with the rotation
invariant using moments of the image.

2.1 An a�ne invariant up to rotations: a
unique class of linear transformations

In [15, 16, 17], we showed that there exists a class of
transformations of the image of a planar surface which
generates unique projections of it up to rotations in the
image �eld. It was precisely shown that this class of
transformations is the only class of linear transforma-
tions which provides invariance up to rotations, as long
as we are concerned with no higher than second order
statistics of the image(see [15]). This property is sum-
marized in the following theorem.
[Theorem ]
Let X be a model feature position and X0 be the corre-
sponding data feature position in the 2D �eld. We can
relate these by

X0 = LX + ! (1)

where L is a 2�2 matrix and ! is a 2D vector. Now sup-
pose both features are subjected to similar linear trans-
formations

Y = AX + B (2)

Y 0 = A0X0 +B0 (3)

Y 0 = TY + C (4)

where A;A0; T are 2 � 2 matrices and B;B0; C are 2D
vectors. Then, if we limit T to an orthogonal matrix, a
necessary and su�cient condition for these linear trans-
formations to commute (i.e. to arrive at the same values
for Y 0) for all X;X0 (see Figure 1), as long as only up to
second order statistics of the features are available, is

A = cU��
1

2�T (5)

A0 = cU 0�0�
1

2�0T (6)

where � and �0 are eigenvector matrices and � and �0

are eigenvalue matrices of the covariance matrices of X
and X0 respectively, U and U 0 are arbitrary orthogo-
nal matrices, and c is an arbitrary scalar constant. The

terms [�]
1

2 denote square root matrices[8] and [�]T means
matrix transpose. 2

Furthermore, it was shown[15] that when (1) repre-
sents the motion of a plane, and both � and �0 rep-
resent rotations/reections simultaneously, and U and
U 0 are set to some rotation matrices, then T in (4) can
be constrained to be a rotation matrix. As another as-
pect of this normalization process, we know that trans-
formations A;A0 de�ned in (5) and (6) transform the
respective distributions to have a covariance matrix that
is the identity matrix. Arguments were also given on
the physical explanations of this property for the rigid
object case. In [15, 16, 17], to recover the a�ne param-
eters using this property, we used clustering technique
to derive three potentially corresponding clusters in the
model and data 2D features and used their centroids as
matching features in the alignment framework.

In this section, we present other methods to directly
recover the a�ne parameters using this invariant prop-
erty. Recall that once we have normalized the image
using the transformations given in (5), (6), the shapes
are unique up to rotations. Thus, if we can compute the
rotation matrix T in (4) which relates the normalized
data image from the normalized model we can recover
the a�ne transformation L by

L = A0�1TA (7)

where the translational component has been removed,
using the centroid coincidence property[2, 15]. Note
however, that, since this normalization process trans-
forms the covariance matrices into identity matrices
times a scale factor, the covariances can no longer be
used to compute the rotation angle between the normal-
ized model and data features. So, we need to use some
other information to determine this rotation angle.

2.2 Computing the rotation angle using second
order weighted moments of the image

Although the binary image of the model and the data
are normalized by the matrices A;A0 so that they have
identity covariance matrices, the weighted moments of
the image function { for instance brightness of the im-
age { are not normalized in that sense. Therefore, we
can compute the rotation angle between the normalized
binary images of model and data by �rst using the orien-
tation of the major axes of the image computed in terms
of the weighted moments with respect to �xed coordi-
nates. We then take the di�erence between the absolute
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orientations of the model and the data computed in this
fashion to give the relative rotation angle.

tan 2� =
2M1;1

M2;0 �M0;2

(8)

where Mi;j's are second order weighted moments of the
normalized image given in the following:

M2;0 =
X
x

X
y

(x2)f(x; y) (9)

M1;1 =
X
x

X
y

(xy)f(x; y) (10)

M0;2 =
X
x

X
y

(y2)f(x; y) (11)

where the origins of the normalized coordinate have been
centered at the centroid of each normalized region, � is
the orientation of the normalized image, and f(x; y) is an
image function | such as brightness | de�ned on the
normalized coordinate. For the `image' function, how-
ever, brightness may not necessarily be the best choice.
A desirable property of the `image' function here is sta-
bility under varying ambient light conditions and the
relative orientation of the object surface with respect to
the camera and the light source in 3D space. From the
shape of the formula of (8) with (9)|(11) it is clear that
the rotation angle thus recovered is never a�ected by
scale change of the image function between the model
and data views. Therefore, the property we need here
from the image function is not a perfect constancy, but
merely a constancy within a scale factor under di�erent
illumination conditions. This is not a hard requirement
in practice because we are now focusing on the properties
of planar surfaces. For example, if the sensor channels
are narrow band it is known that the outputs are invari-
ant up to a consistent scale factor over the entire sur-
face(see e.g.[14]). By equation(8), we get two di�erent
candidate angles (by taking the direction of the eigen-
vector with the larger eigenvalue). To select the correct
one, we can align the given image data with the recon-
structed image from the model using the recovered a�ne
parameters based on (7), and pick the one that gives the
best match.

2.3 Rotation angle via Hu's moment
invariants: using 3rd order moments

If the image does not have enough texture, or if it is
a binary image, we can not use weighted moments of
the image to compute the rotation angle between the
normalized image data and the model. In this case,
however, we can use the third order moments of the bi-
nary image. The use of higher order moments for in-
variance to rotation was extensively discussed in pattern
recognition(e.g.[6, 19, 1]). As a by-product of the study
of invariance, in [6] a method for computing the rotation
angle using higher order moments was also presented,
which we rewrite here:

I0
30

� (N 0

3;0 � 3N 0

1;2) � i(3N 0

2;1 �N 0

0;3)

= ei3�[(N3;0 � 3N1;2) � i(N2;1 � 3N0;3)]

� ei3�I
30

(12)

I0
21

� (N 0

3;0 + N 0

1;2)� i(N 0

2;1 +N 0

0;3)

= ei�[(N3;0 + N1;2) � i(N2;1 + N0;3)]

� ei�I21 (13)

where Npq and N 0

rs are respective third order moments
of the normalized binary image for model and data given
in the following (shown only for the normalized model
view) and Ipq ; I

0

pq are the complex moment invariants

proposed in [6].

N3;0 =
X
x

X
y

(x3) (14)

N2;1 =
X
x

X
y

(x2y) (15)

N1;2 =
X
x

X
y

(xy2) (16)

N0;3 =
X
x

X
y

(y3) (17)

where the sums are taken over the entire region of the
binary image in the normalized coordinate in which the
coordinate origin has been centered at the centroid of
the region.
Thus, we have:

tan 3� = �3=�3 (18)

tan � = �1=�1 (19)

where,

�3 = (N 0

3;0 � 3N 0

1;2)(3N2;1 � N0;3)

�(3N 0

2;1 � N 0

0;3)(N3;0 � 3N1;2) (20)

�3 = (N 0

3;0 � 3N 0

1;2)(N3;0 � 3N1;2)

+(3N 0

2;1 � N 0

0;3)(3N2;1 �N0;3) (21)

�1 = (N 0

3;0 + N 0

1;2)(N2;1 +N0;3)

�(N 0

2;1 + N 0

0;3)(N3;0 + N1;2) (22)

�1 = (N 0

3;0 + N 0

1;2)(N3;0 +N1;2)

+(N 0

2;1 + N 0

0;3)(N2;1 + N0;3) (23)

An aspect to which we must pay careful attention in us-
ing Hu's moment invariants is that of n-fold rotational
symmetry. As argued in [6], moment combinations Ipq 's

with the factor eiw�, where w=n is not an integer, are
identically zero if the shape has n-fold rotational symme-
try, so that we can not use those moments for recovering
the rotation angle (see [6] for detail). For example, for
the 4-fold symmetry case such as a square, both of the
formula given in (18) and (19) are useless, and we need
higher than third order moments. This happens if the
original surface shape is a rectangle when viewed from
particular direction in 3D space (of course including the
frontal direction). This is because if some image of the
surface can be a rectangle, then, no matter from what-
ever direction it is viewed, its normalized binary image
becomes a square, and hence has 4-fold symmetry. This
is the consequence of the normalization process we are
using(see [15] for detail). We will see this case in the
experiment soon.
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2.4 Results in using invariants on natural
pictures

We now show experimental results obtained using the
proposed algorithm for recovering a�ne parameters
based on a�ne invariants of natural pictures. All the pic-
tures shown here were taken under natural light condi-
tions. The image regions, which are from planar patches
on the object surfaces, were extracted manually with
some care, but some perturbations may be introduced
by this step of the procedure. Figure 2 shows the results
on images of a Cocoa-Box. The upper row of pictures
show the two gray level pictures, of the same Cocoa-Box
taken from di�erent view points: the left view was used
for the model, while the right was used for the data.The
left and right �gures in the middle row show the respec-
tive normalized images up to a rotation. Indeed, we see
that the two �gures coincide if we rotate the left �g-
ure by 180 degrees around its centroid. The left and
right �gures in the lower row are the respective recon-
structed image data from the model view (shown in the
upper left) by the recovered a�ne transformation using,
lower left: a�ne invariant plus second order weighted
moments of the gray level, lower right: third order mo-
ments of the binary image for computing the rotation
angle. If the method works correctly, then those recon-
structed images should coincide with the corresponding
image portion found in the upper right �gure. Indeed,
we see that both of the methods worked very well for
recovering the transformation parameters.

In Figure 3 the results are shown for pictures of a
Baby-Wipe container. The upper row of pictures shows
the source gray level pictures of a Baby-Wipe container
of which the front part was used for the experiment: the
left view was used for the model, the right view was used
for the data. The left and right �gures in the middle row
show the respective normalized images. The lower �g-
ure is the reconstructed image data from the model view
using the a�ne transformation recovered by means of
a�ne invariant plus second order weighted moments for
computing the rotation angle. We would expect that the
reconstructed image coincides well with the image in the
upper right. From the �gure, we see that this method,
i.e., a�ne invariant plus second order weighted moments
worked very well for recovering the parameters. As ob-
served in the �gures, the normalized images are almost
4-fold rotationally symmetric, so that | as described
previously | we can not use the third order moments
of the normalized binary image to recover the rotation
angle.

Figure 4 shows the results on some Tea-Box pictures.
The upper row shows the pictures of a Tea-Box: the left
view was used for the model, while the right view was
used for the data. The left and right �gures in the middle
row are the respective normalized images up to a rota-
tion. The left and right �gures in the lower row show the
respective reconstructed image data from the model view
using the recovered a�ne transformation based on a�ne
invariant plus second order weighted moments of the
gray level (left) and third order moments of the binary
image (right) for recovering the rotation angle. From the
�gure, we see that both of the reconstructed images coin-

cide well with the original data shown in the upper right.
Though both the methods worked fairly well, the method
using second order weighted moments performed slightly
better. Considering that both of the reconstructed im-
ages are tilted a little bit in a similar manner, perhaps
some errors were introduced in the manual region ex-
traction.

3 A sensitivity analysis in the use of

a�ne plus rotation invariant

In this section we analyze the sensitivity of the pro-
posed algorithm for recovering a�ne transformations us-
ing a�ne invariant plus second order weighted moments
of the image function to perturbations in the image data.
Perturbations are caused, for example, by errors in re-
gion extractings, by lack of planarity of the object sur-
face, or by occlusions. From (7), we know that the sensi-
tivity of the recovered a�ne parameters against pertur-
bations solely depends on the stability of A0, the matrix
normalizing the given binary image, and T , the rota-
tion matrix relating the normalized model and the data
views, as we assume that the model, so that A, does not
include any perturbations. As described in (2.1), the
transformation A0 can be computed solely using eigen-
values and eigenvectors of the covariance matrix of the
original binary image, i.e., the set of (x; y) coordinates
contained in the image region. Therefore, if the given
image contains perturbations, these have e�ects on the
matrix A0, but only through the covariances. In other
words, the errors in A0 can be completely described by
the perturbations expressed in terms of covariances. On
the other hand, the e�ect of the perturbations on the
recovered rotation matrix di�ers according to which al-
gorithm we take for computing rotation, namely, the
weighted moments of the image attributes, or the third
order moments of the binary image of the objects. In
this section, we only show the case for second order
weighted moments of the image attributes. The per-
turbation analysis of the algorithm based on third order
moment may be presented in a subsequent paper.

3.1 Analytical formula for sensitivity

In the following, we derive the sensitivity formulas for
the a�ne parameters to be recovered, given perturba-
tions in the image data with respect to the model. Let
the ideal description(without any errors) for the normal-
ization process be presented as:

~A0 ~LA�1 = ~T (24)

and the a�ne parameters are recovered by(c.f.(7)):

~L = ~A0
�1 ~TA (25)

Throughout the subsequent parts of the paper, we con-
sistently use the notation [ ~� ](tilde) for ideal parameter
values and one without tilde for actually observed val-
ues, unless otherwise stated. Then, the perturbations
�L happening on L is given as follows:

��L = (A0�1T � ~A0
�1 ~T )A

= f( ~A0 ��A0)�1( ~T ��T )� ~A0
�1 ~TgA

4



= f ~A0
�1

(I ��A0 ~A0
�1

)�1( ~T ��T )� ~A0
�1 ~TgA

= [ ~A0
�1

f

1X
k=0

(�A0 ~A0
�1

)kg( ~T ��T )� ~A0
�1 ~T ]A

= ~A0
�1

(�A0 ~A0
�1 ~T ��T )A +O(�2) (26)

where ��A0 and ��T are respective perturbations of

A0 and T such that ��A0 = A0 � ~A0, ��T = T � ~T .
The minus signs for the perturbations are for consistency
with the perturbation of the covariances which will ap-
pear soon. Thus, ignoring the higher than �rst order
terms, we now know that our job is to derive formulas
for �T and �A0 in terms of perturbations contained in
the image data.

[Perturbations in A']
As observed in (6), A0 is a function of eigenvalues �r 's
and eigenvectors �r's of the covariance matrix �0 such

that A0ij(�;�) = �
�

1

2

i �ji where �r is the rth eigenvalue
and �sr is the sth component of the corresponding rth

eigenvector �r. Let ~A0ij be the ideal value for A
0

ij , the

ij component of the matrix A0. Then, we get a formula
for the perturbations �A0ij from the Taylor expansion of

A0 in terms of � and � as follows:

��A0ij = A0ij �
~A0ij

= A0ij(
~�i ���i; ~�ji ���ji) �A0ij(

~�i; ~�ji)

= �
@A0ij

@�i
��i �

@A0ij

�ji

��ji + O(�2)

= ��
3

2 (
1

2
��i ~�ji �

~�i��ji) + O(�2) (27)

where perturbations of the eigen properties are de�ned

as ���i = �i � ~�i,

���i = �i �
~�i.

Here, from perturbation theory[3], we have:

���k = �

~�l

T
��0 ~�k

~�k � ~�l

~�l (28)

���k = � ~�k

T
��0 ~�k (29)

where (k; l) 2 f(1; 2); (2; 1)g and ���0 is the perturba-

tion of the given covariances such that ���0 = �0� ~�0.
The minus sign of the perturbation of covariances ac-
counts for the occlusions (being occluded by some other
surface) occurring in the given image data. Substituting
(28) into (27), we obtain:

��A0
11

= � ~�1
�

1

2

~�2

T
��0 ~�1

~�1 � ~�2

~�21

+
1

2
~�1
�

3

2 ( ~�1

T
��0 ~�1) ~�11 (30)

��A0
12

= � ~�1
�

1

2

~�2

T
��0 ~�1

~�
1
� ~�

2

~�22

+
1

2
~�1
�

3

2 ( ~�1

T
��0 ~�1) ~�21 (31)

��A0
21

= � ~�2
�

1

2

~�1

T
��0 ~�2

~�2 � ~�1

~�11

+
1

2
~�
2

�
3

2 ( ~�
2

T
��0 ~�

2
) ~�

12
(32)

��A0
22

= � ~�2
�

1

2

~�1

T
��0 ~�2

~�2 � ~�1

~�12

+
1

2
~�2
�

3

2 ( ~�2

T
��0 ~�2) ~�22 (33)

The equations (30)|(33) give the �rst order approxi-
mation of the perturbation �A0ij for A0ij, that is a lin-

ear combination of the perturbation ��0pq such that

�A0ij =
P

pq �
ij
pq��

0

pq where �pq are coe�cients that are

composed of the eigen properties of the covariances ma-
trix of the ideal image data, that are uniquely determined
by (30)|(33) and are independent of the perturbations.

[Perturbations in T: the rotation matrix]
In deriving an analytical formula for the perturbation
�T , we rely on the formula given in (8)|(11), relat-
ing the rotation angle to the second order weighted mo-
ments of the image (as we have �xed the orientation of
the model, orientation of the given image can be seen to
be equivalent to the rotation angle). Further, we have
the following relation between the weighted moments of
the original and the normalized images.

[ ~M 0] = ~A0[ ~m0] ~A0
T

(34)

[M 0] = A0[m0]A0
T

(35)

= ( ~A0 ��A0)([ ~m0]� [�m0])( ~A0 ��A0)T(36)

where [m0]; [M 0] are respective symmetric matrices of
original and transformed weighted moments de�ned in
the following and the term [�m0] is the matrix of the per-
turbation contained in the original image data in terms
of the weighted moments:

[m0] =

�
m0

20
m0

11

m0

11
m0

02

�
(37)

[M 0] =

�
M 0

20
M 0

11

M 0

11
M 0

02

�
(38)

[��m0] = [m0]� [ ~m0] (39)

Let �; ~� be the recovered and ideal rotation angle and
��� be the corresponding perturbation, where we as-
sume that �� is small enough such that:

��T =

�
cos(~� ���) � sin(~� ���)

sin(~� ���) cos(~� ���)

�

�

�
cos(~�) � sin(~�)

sin(~�) cos(~�)

�

=

�
�� sin(~�) �� cos(~�)

��� cos(~�) �� sin(~�)

�
+O(�2) (40)

In the following, we derive a formula for perturbation
�� in using second weighted moments of the image. As

we assumed that ��� = � � ~� is small enough, we can
approximate it as:

��� =
1

2
(2� � 2~�)
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�
1

2
tan(2� � 2~�)

=
1

2
�
tan(2�) � tan(2~�)

1 + tan(2�) tan(2~�)

�
1

2
�
tan(2�) � tan(2~�)

1 + ftan(2~�)g2
(41)

Substituting the relation presented in (8), we get:

��� �
1

1 + ftan(2~�)g2

�(
M 0

1;1

M 0

2;0 �M 0

0;2

�

~M 0

1;1

~M 0

2;0 �
~M 0

0;2

) (42)

�
1

1 + ftan(2~�)g2
�

1

( ~M 0

2;0 �
~M 0

0;2)
2

� J (43)

=
1

( ~M 0

2;0 �
~M 0

0;2)
2 + (2 ~M 0

11
)2
� J (44)

where

J � M 0

11
( ~M 0

20
� ~M 0

02
)� ~M 0

11
(M 0

20
�M 0

02
) (45)

Substituting (37)|(39) into (45) we get:

J = e11�A
0

11
+ e12�A

0

12
+ e21�A

0

21
+ e22�A

0

22

+f20�m
0

20
+ f11�m

0

11
+ f02�m

0

02
+ O(�2) (46)

where eij's, fpq 's are respective coe�cients of �A
0

ij and

�m0

pq that are composed of the components ~A0ij and

~m0

rs that are independent of the perturbations involved
in the given image data.
Then, combining (40), (44), and (46), we get �T .

[Perturbation in L]
Finally, combining the formulas for �T thus derived with
(30)|(33) and substituting it into (26), we obtain the
perturbation �L:

��Lij �

X
r;s

(�ijrs��
0

rs + �ijrs�m
0

rs) (47)

where �; � are coe�cients that are exclusively com-

posed of the components ~A0ij ,
~m0

rs and Aij , that

are independent of the perturbations, and (r; s) 2

f(2; 0); (1; 1); (0;2)g. By this linear combination of ��0rs
and �m0

rs, we have obtained the �rst order approxima-
tion of �Lij, the perturbation of Lij , given the pertur-
bations in the original image data in terms of the sec-
ond order moments of the binary image (��0rs), and the
second order weighted moments of the image attributes
(�m0

rs).

3.2 Experiments

Now we show the sensitivity of the proposed algorithm
for recovering a�ne parameters based on a�ne invariant
plus second order weighted moments to perturbations of
the given image region. From (47), we know that per-
turbation of each recovered component Lij is the linear
combination of perturbations of moments of the given
image. Here, for simplicity, we try to capture the overall

trend of the sensitivity of L to perturbations in the given
data by examining the following formulas:

� �

vuutPi;j�L
2

ijP
i;j

~Lij

2
(48)

against:

�2 �

vuutPi;j f
�f2(��0ij)

2 + (�m0

ij)
2gP

i;jf
�f2( ~�0ij)

2 + ( ~m0

ij)
2g

(49)

where �f is a balancing parameter, and in the following
experiments we set it to 255/2. The terms �, �2 express
respectively the normalized errors of the recovered a�ne
parameters and the normalized perturbations in terms
of the moments of the image. We expect that those two
formulas show monotonic relations when perturbations
in the moments are small. Of course, we know from the
above arguments that there will be some complicated
interactions between the two, but we hope some insight
may be obtained by observing those two formulas. We
use the same picture of a Cocoa-Box used in the earlier
experiments. To study the e�ects of occlusion, pertur-
bations in the image data were produced by dropping
particular connected regions from the (almost) perfect
image data, as given in Figures 5. The upper pictures
show examples of the perturbed image data for which
some percentage of the image region was dropped: left
5%, middle 15%, right 25%. The lower pictures show
the respective reconstructed image data. Figure 6 shows
� (vertical axis) versus �2 (horizontal axis), in which
the perturbations were taken from 2.5% to 25% by 2.5%
step. From the �gure, we see that �, accuracy in recov-
ering a�ne parameters, is almost proportional to �2, the
perturbations, when it is small, but the slope increases
a lot as �2 increases.

4 Using di�erential properties of the

image: without invariants

In this section, we derive another constraint equation on
a�ne parameters based on the di�erential properties of
the image, and combine it with the canonical geometrical
constraint given in (1) to recover the a�ne transforma-
tion. We rewrite here the geometric constraint on the
motion of planar surfaces for convenience:

X0 = LX (50)

where the translational component has been eliminated
(based on the invariance of the region centroids). Deriv-
ing the covariance matrices on both sides of (50) gives:

�X0 = L�XL
T : (51)

where indices of the covariances �X0 ;�X show the corre-
sponding distributions. Due to the symmetry of covari-
ance matrix, we have only three independent equations
in (51) for four unknowns that are the components of
L. Therefore, we apparently need another constraints
to solve for L. (comments: The constraint of ratio of
the image area det[L] = AREA(X0)/AREA(X) is re-
dundant here when one employs (51).) From this point
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of view, what we have done in the preceding sections can
be seen as imposing constraints of the rotations between
the normalized (up to rotations) images either in terms
of weighted moments of some image attribute or using
third order moments of the binary image. Here, we will
seek another constraint which does not use invariants,
based on the di�erential property of the image which is
related to the underlying geometry of the image.

4.1 Deriving another constraint based on
di�erential properties of the image

To derive another constraint on a�ne parameters, sup-
pose that we have an image attribute E(X) | some
scalar function of position X in the image �eld | that
is related to E0(X0) of the corresponding point X0 in
another view by:

E(X) =
1

�
E0(X0) (52)

where X and X0 are related by (50) and � is a scalar
constant. This represents a constraint that the changes
of the function E between the di�erent views are only
within a scale factor that is consistent over the speci�ed
region. Again, we can claim, as in the previous discus-
sion of 2.2, that this constraint is a fairly reasonable one.
Taking the gradient of both sides of (52),

(Ex; Ey)
T =

1

�
JT (E0x; E

0

y)
T (53)

where Es's denote partial derivatives of E in terms of
the variable s, and J is the Jacobian of X0 in terms of
X such that

J =

0
B@

@x0

@x
@x0

@y
@y0

@x
@y0

@y

1
CA (54)

= L (55)

we get a similar constraint to that on the geometry given
in (50), in the di�erential image, that includes the same
a�ne parameters L:

U =
1

�
LTU 0 (56)

where U = (Ex; Ey)
T and U 0 = (E0x; E

0

y)
T . Taking the

covariances brings another constraint on a�ne parame-
ters in terms of the second order statistics of the di�er-
ential image as follows:

�U =
1

�2
LT�U 0L (57)

Thus, we have obtained two constraint equations in
(51),(57) on a�ne parameters which are composed of
up to second order statistics of the geometry and the
di�erential properties of the image.

4.2 Solving for the matrix L

We show how we can solve for the a�ne transformation
L, combining the constraints of the geometry and the dif-
ferential properties of the image. We anticipate that in

practice, due to the limited dynamic range of the sensor
device as well as its spatial resolution, the geometrical
constraint would probably be more reliable than the dif-
ferential constraints. Therefore, we incorporate all the
three geometrical equations given in (51) with one of the
three di�erential constraints given in (57) to get a solu-
tion for L. But, for the purpose of stability, we will try
all the possible combinations of the set of the three from
(51) with every one of (57), and choose the best-�t match
in terms of the alignment of the model with the image
data, just as in the case of using the a�ne invariant.

Combining (51) and (57) we immediately get:

� =

s
det[�X0 ]det[�U 0]

det[�X ]det[�U ]
(58)

Since covariance matrices are positive de�nite and sym-
metric, it is not hard to see from equation (51) that L
can be written as:

L = �
1

2

X0Q�X

1

2 (59)

where �
1

2

X0 ;�
1

2

X0 are respective positive de�nite symmet-
ric square root matrices of �X0 ;�X , that are unique[8],
and Q is an orthogonal matrix, accounting for the re-
maining one degree of freedom. Considering the fact

that 0 < det[L] = det[�
1

2

X0 ]det[Q]det[�X

1

2 ] we know that
Q must be a rotation matrix, so that Q may be written
as:

Q =

�
cos � � sin �
sin � cos �

�
(60)

thus we have:

L =

�
e11 cos � + f11 sin � e12 cos � + f12 sin �
e21 cos � + f21 sin � e22 cos � + f22 sin �

�
(61)

where the coe�cients eij ; fij are composed of the ele-

ments of �
1

2

X0 and �X

1

2 and those are uniquely deter-
mined by (59). Substituting (61) into each of the two
equations (we have already used one for solving for �) in
(57) yields:

kij(cos �)
2 + 2lij(cos �)(sin �) +mij(sin �)

2 = �2pij (62)

where kij; lij;mij are the respective coe�cient of

(cos �)2, (cos �)(sin �), and (cos�)2 in the ij components
of the resulting matrices in the left hand side, that are
composed of coe�cient epq 's,frs's, and elements of �U 0 ,
and pij in the right hand side. Solving for equation (62)
we get:

cos � = �

r
�c

�c
(63)

sin � = �

r
�s

�s
(64)

where,

�c = 2l2 + (m� �2p)(m � k)

�
p
4l2(l2 � (�2p�m)(�2p� k)) (65)

�c = (m � k)2 + 4l2 (66)

�s = 2l2 + (k � �2p)(k �m)

�
p
4l2(l2 � (�2p� k)(�2p �m)) (67)

�s = (k �m)2 + 4l2 (68)
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where indices have been suppressed for simplicity. By
substituting this back into (61), we �nally obtain the
four possible candidate of L. To select the best one out
of this candidate set, we will try out all the candidates
using the alignment approach and pick the one that �ts
best.

The advantage of using gradient distributions of the
image functions, compared with using only geometri-
cal properties, is that their covariances may not be as
strongly disturbed by local missing regions or occlusions.
Actually, we show below a demonstration of this using
experiments on natural images. In this section we de-
scribed a method that combines di�erential and geomet-
rical properties of the image, but we might be able to
derive a di�erent method for recovering the a�ne pa-
rameters if we had more than one reliable image at-
tributes. By combining those two image constraints,
instead of incorporating geometry, we may be able to
evelop a method that would be less a�ected by missing
regions.

Since the major disadvantages of the use of global
features such as moments is the apparent senisitivity to
local disturbances, this approach | that is, the use of
di�erential properties | could be a key issue for improv-
ing the stability of the algorithms. In the Appendix we
also show | at least mathematically | that even a sin-
gle point correspondence between the model and data
2D views su�ce to recover a�ne parameters, if some in-
variant image function is available under the change of
orientation of the surface.

[Summary]
In this section so far, we have mathematically derived
a constraint equation on a�ne parameters based on the
di�erential properties of the image in terms of its second
order statistics. Then, combining this constraint with
the canonical geometric constraint | again in terms of
second order statistics | we shown how we can solve for
the a�ne parameters by a direct computation.

4.3 Results using di�erential properties on
natural pictures

Results using the algorithm via combination of the ge-
ometrical and di�erential properties of the image are
shown on the same natural pictures used in the earlier
experiments for the method based on a�ne invariants.
We used the gradient of the gray level (brightness) im-
age function for the di�erential data. Note that even
though the picture given in the following shows only the
data for the manually extracted region used for recogni-
tion, we actually use the original image when calculating
the gradient at each point. As a result, the arti�cially
introduced edges of the extracted region do not have
any e�ect on the derivation of the gradient distribution.
Note that this is very important in demonstrating the ef-
fectiveness of our method, because otherwise larger con-
tributions on the covariances of gradient distributions
would be made by the arti�cially constructed edges.

Figure 7 shows the results on the Cocoa-Box pictures.
The left and right �gures in the upper row show the re-
spective gradient distribution | the horizontal axis is fx

and the vertical axis is fy | for the model and the data
views. The lower �gure shows the reconstructed image
data from the model view by the a�ne transformation
that was recovered. We expect this �gure to coincide
with the corresponding portion of the upper right picture
in Figure 2. From the �gure, we see that the algorithm
performed almost perfectly.

In Figure 8 the results on the Baby-Wipe container
pictures are given. The left and right �gures in the up-
per row show the respective gradient distribution for the
model and the data view. The lower �gure is the recon-
structed image data. We expect this to coincide with the
corresponding portion of the upper right picture of the
Figure 3. The accuracy is again fairly good, although
not as good as that obtained by a�ne invariant plus sec-
ond order weighted moments. Likewise, Figure 9 shows
the results on the Tea-Box pictures. The result is almost
as good as that obtained using a�ne invariant.

In Figure 10, we show the reconstructed image data
given the perturbation in the original image. We used
the same data as that used in the sensitivity tests for the
a�ne invariant method. The �gures show the respective
results for the fraction of missing region 5%(left), 15%,
25%. In Figure 11, the values of � (vertical axis), accu-
racy in recovering a�ne parameters, are plotted against
the percentage of the missing region (horizontal axis) in
the given image data. We compared this results with
the one obtained by the a�ne invariant method pre-
sented previously. Apparently, the results by di�erential
method (plotted as blocks) are less sensitive to pertur-
bations than those by obtained by the a�ne invariant
method (plotted as stars). Probably, this is due to the
use of di�erential distribution as described previously.

5 Conclusion

In this paper, we proposed new algorithms for 3D ob-
ject recognition that provide closed-form solutions for
recovering the transformations relating the model to the
image. We proposed two di�erent algorithms: The �rst
one is based on the a�ne plus rotation invariants using
no higher than second or third order moments of the im-
age. Some results on natural pictures demonstrated the
e�ectiveness of the proposed algorithm. An error analy-
sis was also given to study the sensitivity of the algorithm
to perturbations. The second algorithm used di�erential
properties of the image attribute. Results demonstrated
that the use of di�erential properties of image attributes
allows a recovery of the parameters that is insensitive
to missing regions in the given image. This suggested a
new direction of object recognition in the sense that it
may provide a robust technique using global features for
recovering transformations relating the model to the im-
age. Di�erential properties have been extensively used
in motion analysis(e.g.,[5]), but limited to in�nitesimal
motions of the object. In contrast to the case of motion
analysis, our case is not limited to in�nitesimal motion.
The new method can deal with any motion of the planar
surface, as long as the change of the image attribute is
constrained within a scale factor at each position on the
object. Though all the demonstrations were only on pla-
nar patches, as we described, it can connect with the full
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3D model of the object to recover the full 3D information
via direct computation.
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Appendix: Recovering a�ne parameters

via single point correspondence

In this appendix we give theoretical arguments showing
that even a single point correspondence between two dif-
ferent views su�ces to recover the a�ne parameters by
using di�erential properties of the image. To do this we
assume that we have a nice image attribute (function) I
which has the perfect invariant property between di�er-
ent views such that: I(X) = I0(X0) and I 2 C2 where
X0 = LX.
(Comments: This complete invariance assumption may
seem to be unrealistic in practice. But, again, as argued
in [14] when the ambient light is not changed it is known
that the ratios of the sensor outputs of di�erent channels
are invariant if the sensors are narrow band.)

Taking the gradient of I we have:

Ix = L11I
0

x0 + L21I
0

y0Iy = L12I
0

x0 + L22I
0

y0 (69)

Deriving the second order derivatives, we have:

Ixx = L2
11
I0x0x0 + 2L11L21I

0

x0y0 + L2
21
I0y0y0 (70)
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Ixy = L
11
L
12
I0x0x0 + (L

11
L
22
+ L

12
L
21
)I0x0y0

+L21L22I
0

y0y0 (71)

Iyy = L2
12
I0x0x0 + 2L12L22I

0

x0y0 + L2
22
I0y0y0 (72)

From (69) we get L21 = (Ix�L11I
0

x0)=Iy , and substitut-
ing this to (70) and rearranging we have

(I 0x0x0I0y0

2

� 2I0x0I0y0I0xy + I0y0y0I0x0

2

)L2
11
� 2(I0y0I0x0y0 + I0x0I0y0y0)IxL11 + I2xI

0

y0y0 � I0y0

2

Ixx = 0 (73)

Likewise, we have a similar equation for L22(and L12).
Then, solving for these quadratic equations we obtain:

L11 =
(�I0y0I0x0y0 + I0x0I0y0y0)Ix � jI0y0 j
1

I0x0x0I0y0

2

� 2I0x0I0y0I0xy + I0y0y0I0x0

2
(74)

L21 =
(�I0x0I0x0y0 + I0y0I0x0x0)Ix � (I0x0=I0y0)jI0y0 j
1

I0x0x0I0y0

2

� 2I0x0I0y0I0xy + I0y0y0I0x0

2
(75)

L21 =
(�I0y0I0x0y0 + I0x0I0y0y0)Iy � (I0y0=I 0x0 )jI0x0 j
2

I0y0y0I0x0

2

� 2I0y0I0x0I0xy + I0x0x0I0y0

2
(76)

L11 =
(�I0x0I0x0y0 + I0y0I0x0x0)Iy � jI0x0 j
2

I0y0y0I0x0

2

� 2I0y0I0x0I0xy + I0x0x0I0y0

2
(77)

where


1 =

q
I2x(I

0

x0y0

2

� I0x0x0I0y0y0) + Ixx(I
0

x0x0I0y0

2

� 2I0x0I0y0I0x0y0 + I0y0y0I0x0

2

)


2 =

q
I2y (I

0

x0y0

2

� I0y0y0I0x0x0) + Iyy(I
0

y0y0I0x0

2

� 2I0y0I0x0I0x0y0 + I0x0x0I0y0

2

)
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Figure 2: Results by a�ne invariant method on the Cocoa-Box pictures.
The upper row of pictures shows two gray level pictures of the same Cocoa-Box taken from two di�erent view points: the left

view was used for the model, the right view for the data. The left and right �gures in the middle row show the corresponding

normalized images. Indeed, we see that the two �gures in this row coincide if we rotate the left one by 180 degrees around its

centroid. The left and right �gures in the lower row are the respective reconstructed image data from the model view (shown

in the upper left) by the recovered a�ne transformation using, lower left: a�ne invariant plus second order weighted

moments of the gray level, lower right: third order moments of the binary image for computing the rotation angle. If the

method works correctly, then those reconstructed images should coincide with the corresponding image portion found in the

upper right �gure. Indeed, we see that both of the methods worked very well for recovering the transformation parameters.
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Figure 3: Results by a�ne invariant method on the Baby-Wipe pictures.
The upper row of pictures shows two gray level pictures of a Baby-Wipe container of which the front part was used for the

experiment: the left view was used for the model, while the right view was used for the data. The left and right �gures in

the middle row show the respective normalized images. Indeed, we see that the two �gures coincide if we rotate the left

�gure by about 180 degrees around its centroid. The bottom �gure is the reconstructed image data from the model view by

the recovered a�ne transformation using a�ne invariant plus second order weighted moments for computing the rotation

angle. We expect that the reconstructed image coincides well with the image in the upper right.
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Figure 4: Results by a�ne invariant method on the Tea-Box pictures.
The upper row shows the pictures of a Tea-Box: the left view used for the model, while the right voew was used for the data.

The left and right �gures in the middle row are the respective normalized images up to a rotation. The left and right �gures

in the lower row show the respective reconstructed image data from the model view using the recovered a�ne transformation

based on a�ne invariant plus second order weighted moments of the gray level (left) and third order moments of the binary

image (right) for recovering the rotation angle. From the �gure, we see that both of the reconstructed images coincide well

with the original data shown in the upper right. Though both the methods worked fairly well, the method using second

order weighted moments performed slightly better. Considering that both of the reconstructed images are tilted a little bit

in a similar manner, perhaps some errors were introduced in the manual region extraction.
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Figure 5: Sensitivity analysis against perturbations in the given image.
The upper pictures show examples of the perturbed image data for which some percentage of the image region was dropped:

left 5%, middle 15%, right 25%. The lower pictures show the respective reconstructed image data. The perturbations in the

image data were produced by dropping particular connected regions from the (almost) perfect image data.
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Sensitivity of affine invariant method against perturbations in moments
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Figure 6: Sensitivity of the recovered parameters by a�ne plus rotation invariants against perturbations.
The horizontal axis is �2 while the vertical axis is �. The values of �, accuracy in recovering a�ne parameters, is almost

proportional to �2, the perturbations, when it is small, but the slope increases rapidly as �2 elevates.
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Figure 7: Results by combination of geometric and di�erential properties on the Cocoa-Box pictures.
The left and right �gures in the upper row show the respective gradient distribution | the horizontal axis is fx and the

vertical axis is fy | for the model and the data views. The lower �gure shows the reconstructed image data from the model

view by the a�ne transformation that was recovered. We expect this �gure to coincide with the corresponding portion of the

upper right picture in Figure 2. From the �gure, we see that the algorithm performed almost perfectly.
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Figure 8: Results by combination of geometric and di�erential properties on the Baby-Wipe pictures.
The left and right �gures in the upper row show the respective gradient distribution for the model and the data view. The

lower �gure is the reconstructed image data, that we expect to coincide with the corresponding portion of the upper right

picture of the Figure 3. The accuracy is again fairly good, though not as good as that obtained by a�ne invariant plus

second order weighted moments.
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Figure 9: Results by combination of geometric and di�erential properties on the Tea-Box pictures.
The left and right �gures in the upper row show the respective gradient distribution for the model and the data view. The

lower �gure is the reconstructed image data, that we expect to coincide with corresponding portion of the upper right

picture of Figure 4. The result is almost as good as the one by using a�ne invariant.

Figure 10: Sensitivity of di�erential method against perturbations.
The �gure shows the reconstructed image data for the same perturbed images as those used in the sensitivity tests for a�ne

invariant method. The pictures show respective results for the perturbation percentage in the given image: left 5%, middle

15%, right 25%.

18



Sensitivity of the algorithms against perturbations: Errors vs. Missing Region
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Figure 11: Sensitivity of the recovered parameters by di�erential method against perturbations.
The values of � (vertical axis), accuracy in recovering a�ne parameters, are plotted against the percentage of the

perturbation in the given image data (horizontal axis). The results by a�ne invariant are plotted using blocks, while those

by di�erential method are plotted using stars. Apparently, the results by di�erential method are less sensitive to

perturbations than those by a�ne invariant method.
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